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Abstract— Exam Timetabling Problems (ETTP) are a complex set of NP-Hard problems, solutions to which by using traditional methods 

may be impossible or time consuming. We describe an effective solution to solve this problem by using different form of Genetic Algorithms 

like Steady State Genetic algorithm (SSGA), Simple Genetic Algorithm (SGA) and Generation Genetic Algorithm (GGA) running in parallel 

in a distributed nature. The main drawback of using any variant of genetic algorithm is its convergence time to obtain optimal solutions. In 

this paper we propose and implement a parallel system for executing the genetic algorithms to yield optimal solution in less time. 

Index Terms— Genetic Algorithm, Parallel Computing, Distributed Computing, Timetabling Problems, NP-Hard problems,Parallel Genetic 

Algorithm.   

——————————      —————————— 

1 INTRODUCTION                                                                     

xam timetabling refers to assigning exams to days, time 
periods and rooms, given a number of constraints, which 
can be hard or soft. An example of hard constraints is 

room capacity. Examples of soft constraints are number of 
students having consecutive exams. The timetabling problem 
is NP-hard.  

 
For larger numbers of students and exams, sequential algo-

rithms are likely to be slow. Hence, parallel algorithms should 
be explored. In this paper, we present a parallel genetic algo-
rithm (PGA) for exam timetabling to improve both execution 
time and solution quality. A small number of strategies to 
build parallel algorithms have been proposed [1, 2]. But, they 
are based on different parallelism models and none of these 
strategies has addressed the exam timetabling problem. Our 
purposed PGA is based on distributing computations over 
different processors with limited amount of tree-based com-
munication.  

 
A GA is a meta-heuristic search technique which allows for 

large solution spaces to be non-deterministically searched in 
polynomial time, by applying evolutionary techniques from 
nature [3]. GAs use historical information to exploit the best 
solutions from previous searches, known as generations, along 
with random mutations to explore new regions of the solution 
space. In general, a GA repeats three steps (selection, crossov-
er, and random mutations) as shown by the pseudo code in 
Fig. 1. Selection according to fitness is a source of exploitation, 
and crossover and random mutations promote exploration. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 GENETIC ALGORITHMS & ITS VARIANTS 

2.1 Genetic Algorithm 

Genetic Algorithms (GA) are applicable to a wide variety of 
problems. In particular GA’s have been very successful in ob-
taining near-optimal solutions to many different combinatorial 
optimization problems [4]. Genetic Algorithms are based on 
the principles of natural genetics and survival of the fittest. 
GA searches for solutions by emulating biological selection 
and reproduction. In a GA the parameters of the model to be 
optimized are encoded into a finite length string, usually a 
string of bits. Each parameter is represented by a portion of 
the string. The string is called a chromosome or individual, 
and each input variable (feature) is called a gene. Each string 
is given a measure of "fitness" by the fitness function some-
times called the objective or evaluation function. The fitness of 
a chromosome determines its ability to survive and reproduce 
offspring. The lowest fitness or the "weakest" chromosomes of 
the population are displaced by more fit chromosomes. GA is 
a robust search and optimization technique using probabilistic 
rules to evolve a population from one generation to the next. 
The transition rules going from one generation to the next are 
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Fig. 1. General Scheme of Genetic Algorithm 
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called genetic recombination operators, which include repro-
duction of new individual from fittest one, Crossover where 
portions of two chromosomes are exchanged and Mutation 
where it is performed infrequently. Crossover combines the 
fittest chromosomes and passes superior genes to the next 
generation, thus providing new points in the solution space. A 
new individual is created by altering one of the genes of an 
Individual. Mutation ensures the entire state space will even-
tually be searched and can lead the population out of local 
minima.. 

2.2 Simple Genetic Algorithm 

GA offspring are saved in a separate pool until the pool size is 
reached. Then the children's pool replaces the parent's pool for 
the next generation for SGA. [5] 

 

Algorithm 1: Simple Genetic Algorithm 

   t = 0 

   Initialize P (t) 

   Evaluate P (t) 

   while Termination condition is not satisfied do 

      Selection P(t + 1) from P(t) 

      Perform Crossover  on P(t + 1) 

      Perform Mutation on P(t + 1) 

      Evaluate P(t + 1) 

      Replace P(t) with P(t + 1) 

      t = t + 1 
   end while 

 

2.3 Generation Genetic Algorithm 

This GA produces a complete generation before discarding the 
old one. Solutions from new generation are now used as par-
ents for the next generation and also some of the best parents 
of the previous generation are also copied to implement elitist. 
[6] 

 

Algorithm 2: Generation Genetic Algorithm 

   t = 0 

   Initialize P (t) 

   Evaluate P (t) 

   while Termination condition is not satisfied do 

      Selection P(t + 1) from P(t) 

      Perform Crossover on P(t + 1) 

      Perform Mutation on P(t + 1) 

      Evaluate P(t + 1) 

      Replace P(t) with P(t + 1) but keeping some of the 

      best fit P(t) 

      t = t + 1 
   end while 

 
 

2.4 Steady State Genetic Algorithm 

In a steady state GA the offspring and parents occupy the 
same pool. Each time an offspring is generated it is placed into 

the pool, and the weakest chromosome is dropped off the 
pool. [5] 
 

Algorithm 3: Steady State Genetic Algorithm 

   t = 0 

   Initialize P (t) 

   Evaluate P (t) 

   while Termination condition is not satisfied do 

      Selection P(t + 1) from P(t) 

      Perform Crossover on P(t + 1) 

      Perform Mutation on P(t + 1) 

      Evaluate P(t + 1) 

      Replacement(P(t),P(t + 1)) 

      t = t + 1 
   end while 

 

3 EXAM TIMETABLING PROBLEM 

We consider exam timetabling problem as follows: 
A. Required Input 

1. Courses to schedule. 
2. Rooms/labs available. 
3. For each course to schedule: 

a. Room restrictions (Size of Room) 
b. Number of sections of that course. 
c. Number of student in each course. 

4. For each professor: 
a. Preferences of which courses he/she likes to teach 

 
B. Fitness Calculation 
 
A fitness function computes a single positive integer to 
represent how good the schedule is. The fitness of each indi-
vidual in the population is calculated by adding positive value 
represent the violated constrain weight. 
 

A perfect schedule would contain no conflicts in rooms or 
time conflicts, furthermore, would not violate that the student 
may take only two exams at a day since first and second exam 
must be held within specific period of time, in our case five 
day. For constrains, there are hard constraints that have to be 
repaired in order to get to a working schedule. Also, there is 
another type of constraints; soft constraints, such as a profes-
sor may have two or more exam at a day that may be violated.  
 

Schedule would start with a fitness value of zero, and each 
instance found of a constraint violated would add a value as-
sociated with that constraint importance. After all constraints 
were tested the total value is connected to that schedule as its 
fitness. Then each schedule generated could be easily com-
pared with other schedules simply by looking at which one is 
closer to zero. If a fitness value of zero is found, we can say 
that we have found a ideal schedule. The following constraints 
are used to calculate the fitness of the chromosome F. (1).  

1. Hard Constraints 
a. Each student has at most two exams a day {X} 
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b. Each instance of a room hold one exam at a 
time.{Y} 

c. Different sections for one course must be hold in 
the same schedule.{Z} 

2. Soft Constraints 
a. For one course can be hold in different rooms.{U} 
b. Instructor may have two or more exams at a 

day.{V} 

    (1) 

 
Where X, Y, Z, U, V are either 1 or 0 depending on whether the 
constraints are violated or not respectively. α, β, η, λ, Λ gives 
the penalty amount to be added to the fitness variable. 

 
TABLE I 

Penalty for violation of hard constraints 

Constraints Penalty 

α for X 100 

Β for Y 100 
η for Z 100 

 
TABLE II 

Penalty for violation of soft constraints 

Constraints Penalty 

λ for U 5 

Λ for V 5 

 

4 PROPOSED ALGORITHM (PGA) 

Small populations could mean less genetic diversity while 
larger populations could bog down a computer due to extra 
memory storage. Thus the basic need of genetic algorithm is to 
have more diversity (large population sizes) which is achieved 
at the cost of time & memory. Thus most systems running any 
of the above mentioned variants of genetic algorithm will need 
to have ample amount a memory. Thus we propose a parallel 
genetic algorithm which are run simultaneously on many 
clients to decrease the convergence time. The following algo-
rithm describes the PGA: 

Algorithm 4: PGA : Server Side Algorithm 

Initialize P 

Evaluate P 

Broadcast(P,SP) 

   while New solution in P do 

      if Broadcast time then 

         Broadcast(Pupdated,SP) 

      else if Client Pupdate then 

         Update(Pclient) 

      end if 
   end while 

 
 

Algorithm 5: PGA : Client Side Algorithm 

Recieve(Pserver, SP) 

Update P with Pserver if better fitness 

   while Termination condition is not satisfied do 

      if Better P then 

         Send(P) to server 

      else 

         Run(SGA/GGA/SSGA) 

      end if 
   end while 

 
  

The algorithm starts with a single server along with many 
clients. The server generates the initial population with the 
provided input. This Population, P is then evaluated for the 
fitness function (1). Along with the P the setup parameters, SP 
is broadcasted through the network for the clients. 

On the other side the clients are listening for this broadcast 
message from the server. When this message is received each 
clients update this data to their initial population if and only if 
the population is better than the existing ones. If the client is 
yet to start it uses the population received as it is and uses the 
setup parameter to begin the algorithm. Once updated the 
clients run one of the three variants of GA described earlier. 
This process continues till there is a better offspring produced. 
As soon as this is done the client enters into an update proce-
dure and sends this data to the server. 

The server is either waiting for the populations from other 
clients or is going to broadcast the updated population. As 
soon as the server receives the update message from any one 
of the clients it starts the update procedure where it replaces 
the weak population with the new ones. After every fixed du-
ration the server broadcast this updated population to all the 
clients. 

The process stops when the server finds that there are no 
new population formed and no update is required. The best 
chromosome amongst the final population is selected as the 
solution to the problem. The broadcast message sent at equal 
intervals to the clients serve two main purposes. 
1) It reduces the chances of early convergence to the solu-

tion for local minima, as the update from the server helps 
the client in discovering new regions of the search space. 

2) It also helps in having clients added to the system as and 
when needed. Since every message broadcast from the 
server has the new population as well as the setup para-
meters any client may be added at any point of time 
without the need to stop the process. 
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5 EXPERIMENTAL  RESULTS 

TABLE III 
Comparison of variants of Genetic algorithm with PGA 

Parameters SGA GGA SSGA PGA 

Iterations 500 500 390 345 

Server + Clients 1 1 1 4 
Population 8 8 8 8 

Chromosome Size(bits) 112 112 112 112 
Fitness (Avg.) 0 0 0 0 
Avg. Convergence Time 53s 44s 22s 12s 

6 CONCLUSION 

We have proposed a parallel genetic algorithm for the exam 
timetabling problem, executed on a cluster of PCs. Parallelism 
allows us to handle larger exam timetabling problems within 
reasonable time. The experimental results showed that PGA 
produces good exam timetables with good parallel efficiency. 
Further work will compare PGA with other parallel search 
models and extend empirical work to more cases such as vary-
ing population size and the reference set size for studying the 
quality of the exam timetables in comparison with sequential 
genetic algorithms. 
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