
International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Application of Parallel Genetic Algorithm for
Exam Timetabling Problem

Shiburaj Pappu, Kiran T. Talele, Junaid Mandviwala

Abstract— Exam Timetabling Problems (ETTP) are a complex set of NP-Hard problems, solutions to which by using traditional methods

may be impossible or time consuming. We describe an effective solution to solve this problem by using different form of Genetic Algorithms

like Steady State Genetic algorithm (SSGA), Simple Genetic Algorithm (SGA) and Generation Genetic Algorithm (GGA) running in parallel

in a distributed nature. The main drawback of using any variant of genetic algorithm is its convergence time to obtain optimal solutions. In

this paper we propose and implement a parallel system for executing the genetic algorithms to yield optimal solution in less time.

Index Terms— Genetic Algorithm, Parallel Computing, Distributed Computing, Timetabling Problems, NP-Hard problems,Parallel Genetic

Algorithm.

——————————  ——————————

1 INTRODUCTION

xam timetabling refers to assigning exams to days, time
periods and rooms, given a number of constraints, which
can be hard or soft. An example of hard constraints is

room capacity. Examples of soft constraints are number of
students having consecutive exams. The timetabling problem
is NP-hard.

For larger numbers of students and exams, sequential algo-

rithms are likely to be slow. Hence, parallel algorithms should
be explored. In this paper, we present a parallel genetic algo-
rithm (PGA) for exam timetabling to improve both execution
time and solution quality. A small number of strategies to
build parallel algorithms have been proposed [1, 2]. But, they
are based on different parallelism models and none of these
strategies has addressed the exam timetabling problem. Our
purposed PGA is based on distributing computations over
different processors with limited amount of tree-based com-
munication.

A GA is a meta-heuristic search technique which allows for

large solution spaces to be non-deterministically searched in
polynomial time, by applying evolutionary techniques from
nature [3]. GAs use historical information to exploit the best
solutions from previous searches, known as generations, along
with random mutations to explore new regions of the solution
space. In general, a GA repeats three steps (selection, crossov-
er, and random mutations) as shown by the pseudo code in
Fig. 1. Selection according to fitness is a source of exploitation,
and crossover and random mutations promote exploration.

2 GENETIC ALGORITHMS & ITS VARIANTS

2.1 Genetic Algorithm

Genetic Algorithms (GA) are applicable to a wide variety of
problems. In particular GA’s have been very successful in ob-
taining near-optimal solutions to many different combinatorial
optimization problems [4]. Genetic Algorithms are based on
the principles of natural genetics and survival of the fittest.
GA searches for solutions by emulating biological selection
and reproduction. In a GA the parameters of the model to be
optimized are encoded into a finite length string, usually a
string of bits. Each parameter is represented by a portion of
the string. The string is called a chromosome or individual,
and each input variable (feature) is called a gene. Each string
is given a measure of "fitness" by the fitness function some-
times called the objective or evaluation function. The fitness of
a chromosome determines its ability to survive and reproduce
offspring. The lowest fitness or the "weakest" chromosomes of
the population are displaced by more fit chromosomes. GA is
a robust search and optimization technique using probabilistic
rules to evolve a population from one generation to the next.
The transition rules going from one generation to the next are

E

————————————————

 Shiburaj Pappu is currently pursuing Masters Degree from Sardar Patel
Institute of Technology under Mumbai University, India. E-mail: shibu-
raj.pappu@gmail.com

 Kiran Talele is currently Asst. Professor at Sardar Patel Institute of Tech-
nology. E-mail: kttalele@spit.ac.in

 Junaid Mandviwala is currently pursuing Masters Degree from Thakur
college of Engineering under Mumbai University, India. Email: junaid-
mandviwala@gmail.com

Fig. 1. General Scheme of Genetic Algorithm

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

called genetic recombination operators, which include repro-
duction of new individual from fittest one, Crossover where
portions of two chromosomes are exchanged and Mutation
where it is performed infrequently. Crossover combines the
fittest chromosomes and passes superior genes to the next
generation, thus providing new points in the solution space. A
new individual is created by altering one of the genes of an
Individual. Mutation ensures the entire state space will even-
tually be searched and can lead the population out of local
minima..

2.2 Simple Genetic Algorithm

GA offspring are saved in a separate pool until the pool size is
reached. Then the children's pool replaces the parent's pool for
the next generation for SGA. [5]

Algorithm 1: Simple Genetic Algorithm

 t = 0

 Initialize P (t)

 Evaluate P (t)

 while Termination condition is not satisfied do

 Selection P(t + 1) from P(t)

 Perform Crossover on P(t + 1)

 Perform Mutation on P(t + 1)

 Evaluate P(t + 1)

 Replace P(t) with P(t + 1)

 t = t + 1
 end while

2.3 Generation Genetic Algorithm

This GA produces a complete generation before discarding the
old one. Solutions from new generation are now used as par-
ents for the next generation and also some of the best parents
of the previous generation are also copied to implement elitist.
[6]

Algorithm 2: Generation Genetic Algorithm

 t = 0

 Initialize P (t)

 Evaluate P (t)

 while Termination condition is not satisfied do

 Selection P(t + 1) from P(t)

 Perform Crossover on P(t + 1)

 Perform Mutation on P(t + 1)

 Evaluate P(t + 1)

 Replace P(t) with P(t + 1) but keeping some of the

 best fit P(t)

 t = t + 1
 end while

2.4 Steady State Genetic Algorithm

In a steady state GA the offspring and parents occupy the
same pool. Each time an offspring is generated it is placed into

the pool, and the weakest chromosome is dropped off the
pool. [5]

Algorithm 3: Steady State Genetic Algorithm

 t = 0

 Initialize P (t)

 Evaluate P (t)

 while Termination condition is not satisfied do

 Selection P(t + 1) from P(t)

 Perform Crossover on P(t + 1)

 Perform Mutation on P(t + 1)

 Evaluate P(t + 1)

 Replacement(P(t),P(t + 1))

 t = t + 1
 end while

3 EXAM TIMETABLING PROBLEM

We consider exam timetabling problem as follows:
A. Required Input

1. Courses to schedule.
2. Rooms/labs available.
3. For each course to schedule:

a. Room restrictions (Size of Room)
b. Number of sections of that course.
c. Number of student in each course.

4. For each professor:
a. Preferences of which courses he/she likes to teach

B. Fitness Calculation

A fitness function computes a single positive integer to
represent how good the schedule is. The fitness of each indi-
vidual in the population is calculated by adding positive value
represent the violated constrain weight.

A perfect schedule would contain no conflicts in rooms or
time conflicts, furthermore, would not violate that the student
may take only two exams at a day since first and second exam
must be held within specific period of time, in our case five
day. For constrains, there are hard constraints that have to be
repaired in order to get to a working schedule. Also, there is
another type of constraints; soft constraints, such as a profes-
sor may have two or more exam at a day that may be violated.

Schedule would start with a fitness value of zero, and each
instance found of a constraint violated would add a value as-
sociated with that constraint importance. After all constraints
were tested the total value is connected to that schedule as its
fitness. Then each schedule generated could be easily com-
pared with other schedules simply by looking at which one is
closer to zero. If a fitness value of zero is found, we can say
that we have found a ideal schedule. The following constraints
are used to calculate the fitness of the chromosome F. (1).

1. Hard Constraints
a. Each student has at most two exams a day {X}

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

b. Each instance of a room hold one exam at a
time.{Y}

c. Different sections for one course must be hold in
the same schedule.{Z}

2. Soft Constraints
a. For one course can be hold in different rooms.{U}
b. Instructor may have two or more exams at a

day.{V}

 (1)

Where X, Y, Z, U, V are either 1 or 0 depending on whether the
constraints are violated or not respectively. α, β, η, λ, Λ gives
the penalty amount to be added to the fitness variable.

TABLE I

Penalty for violation of hard constraints

Constraints Penalty

α for X 100

Β for Y 100
η for Z 100

TABLE II

Penalty for violation of soft constraints

Constraints Penalty

λ for U 5

Λ for V 5

4 PROPOSED ALGORITHM (PGA)

Small populations could mean less genetic diversity while
larger populations could bog down a computer due to extra
memory storage. Thus the basic need of genetic algorithm is to
have more diversity (large population sizes) which is achieved
at the cost of time & memory. Thus most systems running any
of the above mentioned variants of genetic algorithm will need
to have ample amount a memory. Thus we propose a parallel
genetic algorithm which are run simultaneously on many
clients to decrease the convergence time. The following algo-
rithm describes the PGA:

Algorithm 4: PGA : Server Side Algorithm

Initialize P

Evaluate P

Broadcast(P,SP)

 while New solution in P do

 if Broadcast time then

 Broadcast(Pupdated,SP)

 else if Client Pupdate then

 Update(Pclient)

 end if
 end while

Algorithm 5: PGA : Client Side Algorithm

Recieve(Pserver, SP)

Update P with Pserver if better fitness

 while Termination condition is not satisfied do

 if Better P then

 Send(P) to server

 else

 Run(SGA/GGA/SSGA)

 end if
 end while

The algorithm starts with a single server along with many
clients. The server generates the initial population with the
provided input. This Population, P is then evaluated for the
fitness function (1). Along with the P the setup parameters, SP
is broadcasted through the network for the clients.

On the other side the clients are listening for this broadcast
message from the server. When this message is received each
clients update this data to their initial population if and only if
the population is better than the existing ones. If the client is
yet to start it uses the population received as it is and uses the
setup parameter to begin the algorithm. Once updated the
clients run one of the three variants of GA described earlier.
This process continues till there is a better offspring produced.
As soon as this is done the client enters into an update proce-
dure and sends this data to the server.

The server is either waiting for the populations from other
clients or is going to broadcast the updated population. As
soon as the server receives the update message from any one
of the clients it starts the update procedure where it replaces
the weak population with the new ones. After every fixed du-
ration the server broadcast this updated population to all the
clients.

The process stops when the server finds that there are no
new population formed and no update is required. The best
chromosome amongst the final population is selected as the
solution to the problem. The broadcast message sent at equal
intervals to the clients serve two main purposes.
1) It reduces the chances of early convergence to the solu-

tion for local minima, as the update from the server helps
the client in discovering new regions of the search space.

2) It also helps in having clients added to the system as and
when needed. Since every message broadcast from the
server has the new population as well as the setup para-
meters any client may be added at any point of time
without the need to stop the process.

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

5 EXPERIMENTAL RESULTS

TABLE III
Comparison of variants of Genetic algorithm with PGA

Parameters SGA GGA SSGA PGA

Iterations 500 500 390 345

Server + Clients 1 1 1 4
Population 8 8 8 8

Chromosome Size(bits) 112 112 112 112
Fitness (Avg.) 0 0 0 0
Avg. Convergence Time 53s 44s 22s 12s

6 CONCLUSION

We have proposed a parallel genetic algorithm for the exam
timetabling problem, executed on a cluster of PCs. Parallelism
allows us to handle larger exam timetabling problems within
reasonable time. The experimental results showed that PGA
produces good exam timetables with good parallel efficiency.
Further work will compare PGA with other parallel search
models and extend empirical work to more cases such as vary-
ing population size and the reference set size for studying the
quality of the exam timetables in comparison with sequential
genetic algorithms.

REFERENCES

[1] W. Bozejko and M. Wodecki, “Parallel Scatter Search algorithm for the flow

shop sequencing problem” Parallel Processing and Applied Mathematics, vol.

4967, pp. 180-188, Heidelberg: Springer Berlin, 2008.

[2] F. Garcia-Lopez, M.G. Torres, B.M. Batista, J.A. Moreno-Perez, and

J.M. Moreno-Vega, “Solving features subset selection problem by a

parallel scatter search” European Journal of Operational Research, vol.

196, pp. 477-489, 2006.

[3] J. H. Holland, “Adaptation in Natural and Artificial Sys-

tems”,Cambridge, MA, USA: MIT Press, 1992.

[4] W. AISharafat, R Naoum, “Adaptive Framework For Network Intru-

sion Detection by using Genetic-Based Machine Learning”, IJCSNS

International Journal of Computer Science and Network Security.

vol.9,No.4, 2009.

[5] AlSharafat, W.S.; AlSharafat, M.S.; , “Adaptive Steady State Genetic

Algorithm for scheduling university exams”, Networking and Informa-

tion Technology (ICNIT), 2010 International Conference on , vol., no.,

pp.70-74, 11-12 June 2010.

[6] Wong, T.; Cote, P.; Gely, P.; , “Final exam timetabling: a practical

approach”, Electrical and Computer Engineering, 2002. IEEE CCECE

2002. Canadian Conference on , vol.2, no., pp. 726- 731 vol.2, 2002.

